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Phase-field models provide a way to model fluid interfaces as having finite thick-
ness. This can allow the computation of interface movement and deformation on
fixed grids. This paper applies phase-field modeling to the computation of two-phase
incompressible Navier—Stokes flows. The Navier—Stokes equations are modified by
the addition of the continuum forcingC%qb, whereC is the composition variable
and ¢ is C’s chemical potential. The equation for interface advection is replaced
by a continuum advective-diffusion equation, with diffusion driverdy chemical
potential gradients. The paper discusses how solutions to these equations approach
those of the original sharp-interface Navier—Stokes equations as the interface thick-
nesse and the diffusivity both go to zero. The basic flow-physics of phase-field
interfaces is discussed. Straining flows can thin or thicken an interface and this must
be resisted by a high enough diffusion. On the other hand, too large a diffusion
will overly damp the flow. These two constraints result in an upper bound for the
diffusivity of O(e) and a lower bound oD (e?). Within these two bounds, the phase-
field Navier—Stokes equations appear to generai® @n error relative to the exact
sharp-interface equations. AD(h?/€?) numerical method is introduced that is en-
ergy conserving in the sense that creation of interface energy by convection is always
balanced by an equal decrease in kinetic energy caused by surface tension forcing.
An O(h*/e*) compact scheme is introduced that takes advantage of the asymptotic,
comparatively smooth, behavior of the chemical potential &) accurate phase-
field models the optimum path to convergence for this scheme appears to b&5.

The asymptotic rate of convergence corresponding to th(i€/%) but results at
practical resolutions show that the practical convergence of the method is generally
considerably faster than linear. Extensive analysis and computations show that this
scheme is very effective and accurate. It allows the accurate calculation of two-phase
flows with interfaces only two cells wide. Computational results are given for linear
capillary waves and for Rayleigh—Taylor instabilities. The first set of computations

is compared to exact solutions of the diffuse-interface equations and of the origi-
nal sharp-interface equations. The Rayleigh—Taylor computations test the ability of
the method to compute highly deforming flows. These flows include near-singular
phenomena such as interface coalescences and breakups, contact line movement, and
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the formation and breakup of thin wall-films. Grid-refinement studies are made and
rapid convergence is found for macroscopic flow features such as instability growth
rate and propagation speed, wavelength, and the general physical characteristics of
the instability and mass transfer rates.

1. INTRODUCTION

Diffuse interface models provide a way of modeling interfacial forces as continuu
forces, the effect being that delta-function forces and discontinuities at an interface
smoothed by distributing them over thin but numerically resolvable layers. Such mod
have attracted much interest recently because of their advantages for making numerica
culations. Diffuse-interface models for multiphase Navier—Stokes flow are much easie
solve than the exact equations because calculations can be done on fixed grids—diffus
terfaces simply propagate through the grids—while calculations of the exact sharp-inter
equations generally require adaptive, interface fitting grids. Interface fitting grids are i
practical for flows involving coalescing or splitting phases or, in general, for 3-D flow
Diffuse-interface flow models can be used to calculate these flows and many others tha
currently impossible for sharp-interface solvers. Their ease of use compensates for |
relatively low accuracy.

There are currently three main types of diffuse-interface models, a tracking/distribu
force model introduced by Unverdi and Tryggvason [23], the continuum surface fol
method (Brackbillet al. [4], Lafaurie et al. [14], Kothe et al. [13]), and phase-field (or
mean-field) based models (Anderson and McFadden [1], Antonovskii [2], Chella nal$ Vi~
[6], Jacgmin [8, 9], Jasnow and h&ls [11], and Nadiga and Zaleski [17]).

The method of Unverdi and Tryggvason tracks interfaces by following the advection
control points. These points mark the smeared interface’s center. The interfaces are fu
defined by connecting the control points by curves or line segments (in 2-D) or triangL
surfaces (in 3-D). Surface tension forces are calculated from the control point positions
distributed to the fixed grids. Changes in fluid properties across the interface are smoo
S0 as to take place over several grid cells.

The continuum surface force model of Bracklgitlal. uses a continuum variable, such
as a color function or density, to mark each phase. The local surface tension forcin
set equal to the local gradient of the continuum variable times its field curvature times
surface tension. The total forcing on the fluid through an interface is thus proportional to
interface’s gradient-weighted curvature. The model has been applied using volume-of-f
(Lafaurieet al.[14], Rideret al.[20], Kotheet al.[13]), TVD (Jacgmin [7], and level-set
(Sussmaret al.[21, 22]) methods.

The above methods are based on models of surface tension forces. Phase-field me
are based on models of fluid free energy. The simplest model of free energy density
gives two phases is

1 -
f= §a|VC|2+ﬂ\IJ(C) (1.1)
a formulation that goes back to van der Waals [24]. The first term is gradient energy,
second bulk energy. Two phases are possibie Has two minima. Interfaces separating
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two phases ar€®(,/«a/B) in width and have a surface tension proportionalfeg. The
surface tension forcing on the fluid is derived variationally from its energy density fiel
Numerical implementations of phase-field models are able to use conventional advec
routines because interface profiles can be maintained against distortion by the use of |
order energy-downgradient anti-diffusion.

Each ofthe above models has its advantages and disadvantages. Unverdiand Tryggve
method has so far met with the most success—a number of significant research results
been generated using it. Its chief drawbacks are that it requires intervention to har
topological changes, that it doesn’t conserve mass or volume, and that it can be difficu
use for three-dimensional calculations because of the need then to utilize adaptive sul
grids. The CSF model handles topological changes well and it can be implemented s
to conserve mass or volume. VOF-CSF methods can be difficult to implement in th
dimensions. These methods also have some instability problems and convergence i
that are not yet understood theoretically.

Phase-field methods appear to have several potential advantages over the VOF-CS
proach. Because phase-field models allow the use of standard advection techniques
are relatively easy to implement in three dimensions, with unstructured grids, or us
finite element techniques. It is easy to generate phase-field numerical implementat
that are dissipative of energy, and that therefore are free of parasitic flows. So far, h
ever, the phase-field method has fallen short in a very important respect. Phase-fiels
terface structure is important in determining interface energy and thus surface tens
Because of the need to calculate this structure, numerical phase-field interfaces have
ally been made wide, typically four to eight cells. Wide interfaces exacerbate other pr
lems of the phase-field method. For example, many phase-field models exhibit curvat
dependent solubilities that are proportional to interface thickness. Also, wider interfa
require stronger anti-diffusion in order to keep them from being distorted by advect
straining.

The main purpose of this paper is to introduce a method that allows the use of mi
thinner interfaces. The asympotics of convected phase-field interfaces are outlined a
is shown how to take advantage of this asymptotics to derive simple, high-order, comy
reconstruction and convection schemes. In many practical cases these schemes allo
accurate and useful calculation of phase-field convection with interfaces that are less
two cells wide. In order to lay the groundwork for this approach, the paper first discus:
the convergence of phase-field modeling. This requires a discussion of both physics
numerics. The convergence of phase-field numerical calculations is dependent both ol
accuracy of the phase-field model and on the accuracy of the numerical methods use
calculate the model.

The paper proceeds as follows. The next section gives a brief introduction to the two-pf
phase-field Navier—Stokes equations. The third and fourth sections look quickly at phe
field interfaces and at the effects of convection and model diffusion on those interfac
The sixth section discusses a very simple second-order implementation of the equat
that conserves energy. The seventh section discusses some fourth order methods the
advantage of interface asymptotics. The eighth, ninth, and tenth sections discuss col
gence issues. The eighth section points out grid effects on interface energy calculati
the ninth discusses one-dimensional convection, and the tenth discusses linear cap
waves. Section 11 discusses a “real-world” fully nonlinear problem: the computation
Rayleigh—Taylor instabilities.
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2. CONTINUUM INTERFACE ENERGETICS AND EQUATIONS

A general model for an isothermal two-phase fluid's free energy density is
1 -
f= aa|VC|q + B¥(C), (2.1)

C is a “measure” of phase. The free energy density is made up of two components.
first is the gradient energ%a |§C|q and the second is the bulk energy dengity (C).

W (C) models the fluid components’ immiscibility. It has two minima corresponding to th
fluids’ two stable phases. The cage-1, « =0, o being the surface tension, apd=0
gives the free energy density for the CSF model. With phase-field methadsiset to 2,

a is set toO(¢), andp is set toO(1/¢). This choice of parameters produces phase-fiel
interfaces withO(¢) thickness andD (1) surface tension. The most frequently used ant
simplest¥ (C) is (C +1/2)2(C — 1/2)?, which has a peak of high energy @t=0 and
minima atCpuiphase= £1/2. This is the¥ (C) used for the calculations in this paper.

The potentialg, is the rate of change of the free enetgy= [ fdV with respect taC,

8F

?=5c
For the CSF method the potential is equal to the surface tension times the field curvat
For the phase-field method the potentiaBi¥’(C) — ' V2C.

Van der Waals [24] hypothesized that equilibrium interface profiles are those that m
imize the integral off . From the calculus of variations, these profiles satigy (C) —
aV - |VC|9-2VC = ¢ = constant. Cahn and Hilliard [5] extended van der Waals’ hypott
esis to time-dependent situations by approximating interfacial diffusion fluxes as be
proportional to chemical potential gradients. The Cahn—Hilliard equation

aC 2 2 2 /

Tl kVep = —kV(aVC — g¥'(C)) (2.3)
models the creation, evolution, and dissolution of diffusively controlled phase-field int
faces (Bates and Fife [3]).

The further extension to diffuse-interface fluid-dynamics is discussed by, among othi
Antanovskii, Jasnow and ¥@ls, and Joseph [12]. The derivation of the diffuse-interfac
fluid-dynamical forcing is fairly simple, especially for compressible flow. The key idee
are (1) convection can change the amount of free energy by either lengthening or th
ening/thinning interfaces, (2) there must be a diffuse-interface force exerted by the fl
such that the change in kinetic energy is always opposite to the change in free ene
(3) this must be true for arbitrary interface configurations and (compressible) veloc
fields. The rate of change of free energy due to convectigngi$dC/dt)|convectiondV =
—[#32;(ujC/ax))dV = [, ujC(3¢4/dx;) dV. The rate of change of kinetic energy
due to surface tension forcirié is fzj Fju; dV. For the two to be equal and opposite
for arbitraryC andd, it must be true thaFj = —C(3¢/9x;). The argument is essentially
the same for incompressible flows. An additional force, the gradient of a potential, mus
introduced to enforce the incompressibility constraint.

The incompressible Navier—Stokes equations with either CSF or phase-field surface
sion forcing are

= BY/'(C) —aV - |VC[I2VC. (2.2)

V.i=0 (2.4)
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Du; au; au; > S >
o Dt' —p—'+pz i — :—vs+v-r,” —CV¢ + gip. (2.5)

S enforces the incompressibility conditio, ; is the viscous stress tensor agds the
gravity vector. The phase-field advection-diffusion equatiorCfos
DC

_9C 9C o o e o 2
E_EJFZu,an =V -k(C)V¢ =V -k (C)V(BY'(C) — aVZC). (2.6)

This is the Cahn—Hilliard equation plus advectieris the diffusion parameter, called the
mobility. (The diffusivity in the bulk phases is¥” (Cpyikphasd-) The evolution of the fluid’s
total energy is found by multiplying (2.5) by, (2.6) by ¢, adding, and integrating. The
result, neglecting some very small effects due to density diffusion, is

& Ji
- /(K|V¢>| +r(C)Vi- Vi) dV, 2.7)

dt
wherew (C) is the dynamic viscosity.
In order to isolate interface and surface-tension effects the calculations in this pa
will be restricted to a Boussinesq fluid with the two phases having the same viscosity
mobility. Equations (2.4)—(2.6) then simplify to

V.i=0 (2.8)
DUi = 2 = ~
0D = —VS+ uVey; — CVe + g p(C) (2.9)
% — 2, 2 ’ _ 2
¢ =KV =k VABY'(C) —aVZC). (2.10)

These are the equations that will be solved in this papeis the mean density ang(C)
is the perturbation fronmg.

—C%¢ is the continuum surface tension forcing in its potential form. This forcing ca
be manipulated into a stress form, which for gengrial

Tjj —az< ) /|VC|2 a (2.11)

i]
aC aC >

The principle axes of the tensor are directed in and perpendicular to the tangent plane o
interface. The normal stress perpendicular to the plane is zero and the two tangent no
stresses are equal. When this form is uSdokecomes the true pressure. The phase-fiel
relationship betweeByessand Syot IS Sstress= P= Sot+Co — Y + %a|%C|2.

Because of incompressibility, the potential form of the surface tension forcing can a
be written asp@C. The news for this is equal to the ol plus ¢C. The actual motion
causing component of the surface tension—as versus the pressure forcing component-
be seen in the vorticity equation. In two dimensions the surface tension vortical forcing
Cy¢x — Cx¢y. Both vC andﬁ/) must simultaneously be nonzero for there to be non-trivia
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velocity forcing. Asymptotically, the forcing occurs only at interfaces. The component
the potential that actually causes motion is that which varies parallel to the interface.

The viscous wall boundary condition used for this paper is no-slip. Two boundary cc
ditions are needed f&. The no-flux condition is

2% _o

= 2.1
3%, (2.13)

X, denotes the direction normal to the wall. The second boundary condition depends or
interface at the wall being at or near local equilibrium. Postulating that the wall free ene
is of the form

Fu =/yg(C)dA, (2.14)

that is, that the wall-fluid interfacial energy is a function only of the fluid compositio
right against the wall, then the resulting phase-field natural boundary condition, wh
corresponds to a diffusively controlled local equilibrium at the wall, is

aC
a— 4+ yg'(C)=0. (2.15)
90Xn
This condition is analogous to the classical contact angle condition, in which the dynal
contact angle right at the wall (the microscopic contact angle) is taken to be the same a
static equilibrium angle. A more general condition that allows nonequilibrium is

DC oC
— =D — ' . 21
5 = 0u(ag +rd©) 2.16)

This results in the microscopic contact angle being a function of wall veldiyaproaches
the equilibrium condition a®,,, the “wall diffusion,” increases to infinity. All the compu-
tations presented in this paper use boundary condition (2.15)g¢@h equal to zero, so
both the equilibrium and the dynamic contact angle will be. 90

3. PHASE-FIELD SURFACE TENSION AND INTERFACE WIDTH

A calculation’s surface tension and interface width are controlled thraygh andg. In
an isothermal fluid system in equilibrium the surface tension of an interface is equal to
integral of the free energy density through the interface. The equilibrium interface pro
is the profile that minimizeg and it can thus be found from the free energy functional viz
the calculus of variations.

The plane interface gives the simplest case. From the stress form of the phase-
equations the surface tension of a phase-field plane interface is

+o0 /d 2
o =ot/70O (d_()-:> dx. (3.1)

The interface profile that minimize® obeys

dC
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Multiplying by dC/dx and integrating, this becomes

dc\?
%(&) — BU(C). (3.3)

The W (C) used for all the calculations in this papef@&-+ 1/2)%(C — 1/2)2. This is the
simplest non-singula® (C) that has two equal energy minima. The equilibrium profile of
C for this isC = % tanh(), where¢ = /B/2ax. The surface tension stressgs andt,,
are g sech(¢)/8. The surface tension igaB/18. ¢ for this interface will be defined in
this paper to be the distance fradn= —.45 toC = +.45 (90% of the variation of). This
is given by 2tanh'(.9) /2a/B ~ 4.164,/a/B. This width contains 98.5% of the surface
tension stress. In general, for genefalthe surface tension of an interface is proportiona
to «/aB while its thickness is proportional tg'a/B.

A class of W of interest isW that have singular behavior &ikphase ONe example is
W =|C — 1/2|3%|C + 1/2/%?, for which W}, ;;;naseh@s square root behavior. Another is
the double obstacle energy recently used by Oono and Puri [19] and Nochetto [18]. T
W¥(C)is —3(C+1/2)(C —1/2) for —1 < C < 7 and+oo for |C| > 3. These models have
some advantages over non-singular models, but they also necessarily raise some dif
numerical issues. This paper will therefore discuss some of their characteristics bu
numerical work will be done with them. One advantage of the double obstacle modelis th
gives asharply defined interface. Its equilibrium plane interface proﬁ]e:i% sin(y/B/ax)
for x| < 5a/B:C= i% otherwise. The interface widthis,/«a/B and its surface tension
is §v/ap.

Interface curvature changes phase-field surface tension. The incurred error in both sul
tension and pressure jump is a quadratic function of interface thickness times curvat
The coefficient of this error is small. For example, the error for the double obstacle ene
is less than 0.25% for a thickness to Gibbs-radius ratio/8f For a ratio of 1 the error
is about 4%. Fol(C) = (C 4 1/2)(C — 1/2)? the error is less than 0.13% for thickness
times curvature equal to .2.

4. PHASE-FIELD FLOW PHYSICS

This section gives an overview of how solutions to the phase-field Navier—Stokes ec
tions behave ags — 0. The emphasis is on behaviors that are not seen in the origir
sharp-interface equations and on how these behaviors can, in the limit, be suppressed
desired, of course, that the diffuse-interface solutions converge to solutions of the sh
interface Navier—Stokes equations. This, it will be shown, places constraintéprg
must go to zero along with, otherwise there is a formall® (1) error due to diffusive trans-
port. But it must approach zero slowly enough so that interface profiles can be maintai
against convective distortion. Unlike a sharp interface, a diffuse interface can be subje
thickening/thinning modes. These can create chemical potential boundary layers that
lead to incorrect interface behavior and that can also be a major source of numerical e
These modes are suppressed as 0 if « (¢) is given the right behavior.

The chemical potential is the phase-field analogue to surface tension times curvature
as such it is a very important variable. It can sometimes provide the key to understanc
a particular physical or numerical issue. As> 0, for appropriatec (¢), interfaces tend
more and more to take on their equilibrium profile and the chemical potential tends
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definiteO(1) values. The variation in interface profile corresponding to@ni$) interfacial
chemical potential i) (¢) and the variation in the interface energy and surface tension
O(e?). Exceptions to this occur during near-singular events such as interface creatiol
disappearance or during interface coalescence or at moving contact lines. These, how
are all instances when the Navier—Stokes equations themselves fail and are invalid.

Solutions of the purely diffusive Cahn—Hilliard equation have potential fields that are ge
erally smooth. The Cahn—Hilliard equation has curvature-dependent solubility (the Gibl
Thomson effect), which is what makes it useful for modeling nucleation, evaporation, &
coarsening. Regions of high curvature are generally also regions of high potential
high solubility—material from these regions fluxes into the surrounding lower-potent
medium. The extent of this solubility depends on the modeblofThe solubility for the
W used for this paper i®(¢). ¥ singular atCpuiphasehave lower orders of solubility. For
¥ = |C — 1/2|%2|C + 1/2/%2 the solubility isO(e?) and for the double obstacle energy it
is zero.

When fluid convection is introduced, the chemical potential is no longer necessa
smooth. This has two causes. The first is that convective straining can tend to thicke
thin an interface. This strain i©(1) and will be opposed by a®(1) divergence of the
diffusion flux. Since this divergence occurs over@fk) thick interface the strain induced
perturbation to the chemical potential@3e?/«). The second cause is related to curvature
dependent solubility. Oscillation of an interface changes its curvature and thus the Ic
solubility on anO(1) time scale. Alternatively, an interface may be convected throug
a surrounding inhomogenous fluid. In either caSehecomes out of balance across the
interface byO(e) (the magnitude of the solubility) and the chemical potential gains
jump of O(1). The diffusive divergence that can correct this imbalanc® {s). Denot-
ing the flux magnitude a®(y), the corresponding boundary layer thickness (the distan
from the interface that is put into balance in @l) timeframe) isO(y /¢). This thick-
ness implies a flux 0D (ke/y). Equating this toO(y) gives a boundary layer thickness
of O(Vk/e).

The first boundary layer is important for numerical reasons. It sets limits on the accur
of ¢ interpolation and differentiation for the fourth order accurate method discussed
Section 7. Dissipation due to this type of boundary layedig®/«). Momentum forcing
by it is comparatively negligible. A model problem for this is the steady state strainit
u=—x, v=Y, with the interface parallel to the-axis. Equation (2.10) becomes

KV2p = yC,. (4.1)

Both C and the resulting are antisymmetric. The force on the fluid, which for this discus
sion is most conveniently written &<y, therefore integrates to zero. These symmetries a
approximately maintained with curved interfaces. The integrated force is then approxima
O(e*/k). Note that this dominance of dissipation over momentum forcing is desirable. T
interface maintains its form though diffusion rather than by distorting the velocity field.
In addition to curvature induced solubility, the phase-field Navier—Stokes equation ¢
exhibit (1) the generation of wall layers, (2) disjoining pressures, and (3) overshoots
undershoots o€ pastCpuiphase The wall layers are due to boundary conditions (2.15)-
(2.16). They can be largely eliminated by choosing a forng{@) so thaty'(Cpuikphasd = 0.
Adisjoining pressure builds when two interfaces become very close. It can cause instabil
that hasten coalescence. This is imitative of what really occurs at microscale lengths anc
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no noticeable negative effect on simulations. Forghased in this paper, the overshoots
are O(¢). the singulanr that reduce or eliminate curvature induced solubility also reduc
or eliminate these overshoots.

C is O(1) with nth interfacial derivativeO(e~"). Velocities are smooth across the in-
terfaces. In generatth interfacial derivatives of the velocities a@(e*™"). The pressure
jumps across interfaces b8t which will be used in all the numerics, is smooth.

The boundary layer analyses above imply constraintg oalative toe. The desired
asymptotic behavior of the interfacial chemical potential is that it be constant across
interface. The component of the potential induced by straining must therefore be asy
totically small compared to the potential's smoother components. This requires

k=0, §<2. (4.2)

Also, solubility-related boundary layers must be thick compared to the interface. This yie
the same constraint. A general physical argument that once again yields this constrai
that ase, « — 0 the interface should stay closer and closer to its equilibrium profile, s
that its tension remains closer and closer to its desired value. For diffusion to domin
convective distortion (4.2) must be true.

There are also constraints on the minimum valué.agfssumingV¥ is such that results
can beO(¢) accurate (phase-field resul®(¢) different from sharp-interface results for
variables of interest), then diffusive fluxes@ficros0 (1) length scales should be allowed
to be no greater tha®(¢). With the potential having a® (1) variation across a®(1)
domain this implies that

§>1. (4.3)

5. MODEL AND NUMERICAL CONVERGENCE

Analysis of the accuracy of phase-field computations is complicated by the fact t
convergence is governed by three factors, not just mesh spacing but also the inter
thickness and the mobility. The mobility affects the thickness and perturbation magnitt
of the chemical potential boundary layers. The rate of convergence of a set of calculati
is given by a double limit which is a combination of the asymptotics of the approach
the phase-field model to the physics of the exact sharp interface and of the convergen
the numerical methods to the exact solution of the phase-field model. In this limit, me
size h, interface thickness, and mobilityx must all be reduced to zero. The interface
thickness must be reduced at a slower rate than the mesh size, so as to obtain a mor
more accurate estimation of the interfacial forces. The relative local truncation error
numerical differentiation o€ is proportional tath/¢)", whereh/¢ is the mesh size scaled
by interface thickness, and is the order of accuracy of the numerical approximation
Truncation error order is not the same as solution error order; the solution error order ca
the same, worse, or, since the truncation error is restricted to interface regions, even b
But assuming for the moment it is the same then equating this truncation error@g¢he
error incurred by this paper’s phase-field model indicates an optimal convergence rat
O(h"/"+1). The corresponding optimal relationship between interface thickness and m
size is there oc h"/M+1,

For more rapid convergence a more accurate phase-field model must beDséd.
accurate results are sometimes possible with the model used in this paper. An examy
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linear plane waves, which will be discussed in Section 10. Thém"/"*+2) convergenc
can be achieved.

6. SECOND ORDER CENTRAL DIFFERENCE METHODS
AND ENERGY CONSERVATION

This section discusses some simple central-differenced staggered-grid methc
shows how they conserve energy. The equations being discretized are (2.8)—(2.1
no-slip andd¢ /dx, = 0C/dx, =0 at walls. The discussion here and throughout the
will be for a uniform, square, Cartesian, or axisymmetric grid. The dis@e@, and¢
are located at cell centers and the velocities are at cell faces. The discretizations of
cous, convective, and gravitational terms in the Navier—Stokes equations are all mac
standard second order centered differences. Standard 5-point discrete Laplacians
to calculate the chemical potential and chemical potential driven diffusion. The ch
potential forcing of the momentums is discretized as

h . . o

Fxit12j = _E(Ci,j +Cit (@0 + 1)) —¢(, ) (6.1a)
h L ..

Fyii+12 = —E(Ci,j +GCi @0, ] +1) —¢d, ))). (6.1b)

Convective fluxes across cell faces are approximated by

h h
EuiJrl/Z,j(Ci.j +Ciy1j), Evi,j+1/2(ci,j +Ci,j11). (6.2)

Both (6.1) and (6.2) use second order central differencing. The discretization |
0O(h?/€?) relative truncation error in interfaces and @gh?) truncation error elsewher
From Section 5, its optimum convergence, @) accurate phase-field models, is hypc
esized to be(h?/3).

Ignoring wall energies, the free energy of the discretized system is

1 1
F= 59 iXj:(cwrl,j -G’ + 50 izj:(ci,jﬂ —Ci,j)*+h%B Iz]: Ui (6.3)
The kinetic energy is
= I 2 Ly 2 6.4
_é pOZuHL%’j_i_é pOZUi,H%- ( . )
1) (]

The discretization is energy conserving, as follows. The rate of change in free enel
to convection is

d]—'
= qu., Ui_1(Cij+GCij) — Z¢i,;ui+;,,-<ci,,-+ci+l,j>
isj

h
+5 Z(pi,jvi,j_%(ci,jfl +Cij) — 5 Z¢i,jvi,j+%(ci,j +Cij+1). (6.5)
ij 1]
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This is found by multiplying the discretized advection-diffusion equation€fgry h?¢
and summing. The rate of change in kinetic energy due to surface tension forcing is

dK h
T Z U1 (Cignj +Cip)@ignj — i)
i
h
=52 Ui+ Ciist + GG — i), (6.6)
i

Equations (6.5) and (6.6) sum to zero, as can be found by reindexing the fisst+ 1)
and third(j — j + 1) sums of (6.5).

The method is very easy to implement. Its major problem is that it requires fairly wide i
terfaces. As will be discussed in Sections 8 and 9, for acceptable resalid 8 must
be such that the interfaces are at leastc@lls wide. For¥ = (C —1/2)%(C + 1/2)?,
and using the definition of interface width given in Section 3, this constrjiigsto be
>(3.5/4.1642h? ~ .71h?,

One way to reduce interface width is to use afiner grid for the color function and potent
This is acceptable costwise because, compared to the velocities and pressuCedineld,
are fairly inexpensive to calculate. The method works well when the potential form of t
momentum forcing is used. It is then easy to manage energy transfers between the c
velocity grid and the fin€ grid so that energy is conserved.

For a uniform grid, the simplest approach is to divide each pressure cefl into{C, ¢}
cells.u is approximated in each pressure cell as varying linearly irxtHeection and as
constantin the direction, and vice versa far. This yields the discrete velocities needed for
solving (2.10). Equation (2.10) is discretized on the fine grid, using all centered differenc
Numbering the{C, ¢} cells in eachp; ; cell fromk=n(i — 1)+ 1 toni andl =n(j —1)
to nj, the effect of convection on the fluid free energy can be written as

I=nj k=n(i+1)
dF¥ h n—|k—
q4 2 g Uil E E l (¢k+1| &) (Ci) + Crs11)

i] I=n(j—1+1 k=n(i—

k=ni I= n(]+l)

ZZU.J+1 Z Z (¢k|+1—¢k|)(Ck|+Ck|+l) (6.7)

k=n(i—-1)+1 I=n(j—1)

h is the fine mesh size. The second order accwrdtecing that conserves energy is

h I=nj k= n(|+1)n_|k
Frivij = -5 Z Z (¢k+1| — k1) (Cki + Ciyr)  (6.8)
I=n(j—1)+1k=n(—

and similarly forv. In general, for energy conservation theirection force on each discrete
un and they direction force on each discretg must obey

§ dF § dF

Fan = —— —; =
n yn Svp dt

6.9
Sup, dt (6.9)

Relations (6.9) can be stated in words as: The rate in change of kinetic energy of a partic
velocity component is opposite to the rate of change of free energy caused by that velc
component. This holds for arbitrary grid systems and interpolations.
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7. FOURTH ORDER COMPACT METHODS

Section 4 discussed how the chemical potential forms two types of interfacial bound
layers. One i (¢) in thickness but with a perturbation goof only O(e?/«). The second
has a thickness dD (,/k /€) with a perturbation 0O (1). Away from coalescence, interface
appearance and disappearance, and moving contact line near-singularities, the che
potential is otherwise general(1) and smoothnth derivatives of in interfacial regions
are O(e2"/k) or O(e"?/k"/?). In either caseth derivatives ofp are always of smaller
magnitude thamth derivatives ofC provided thak = O(e?), § < 2.

There are various ways to take advantage of lgdgshO(1) magnitude (the following
discussion will not consider near-singularities) and its comparative smoothness. This sec
discusses a fairly easy way to construct a com@agdt*/e*) finite volume discretization
on a square Cartesian or axisymmetric grid. It also very briefly discusses a formulation
more general grids. As discussed in Section 5, the optimum choicénakrms ofh, for
fourth order discretizations fdD(¢) accurate phase-field models, appears te txeh*/>.
This gives a convergence rate ©{h%/°).

To calculate fluxes, finite volume methods need to find interfacial valuédi@im given
cell averages o€. The second order discretizations discussed in Section 6 are equival
to finite volume methods that tal(é,j, the cell average, to be identical @ ;, the cell
midpoint value. This approximation has an error@h?/¢2). The linear interpolation to
then findC interface values fron® midcell values has the same order of error.

However, the cell midpoint value can easily be found more accurately. With error ter
included,

_ 2
Cij=Ci— %(VZC)H + O(h*/e*) 4 O(h%/¢5). (7.1)

The equation for the chemical potential is

aV?C — BU/'(C) = —¢p = O(D) (7.2)
from which
(V2C)ij = S\P’(Ci.j) —¢ij/a. (7.3)

The first term on the right hand side@(e ~2), the second i© (e ~1). Substituting into (7.1)
gives
h* B / ~ 4, 4 2 6,6
G+ 2—45\1’ (Ci.j) =Cij +0(h"/e") + O(h/e) + O(h°/€”) (7.4)
a local nonliner equation fo€; j. Fore = O(h%®) the dominant error term i©(h*/e%).
O(h?/e) then isO(h®/€®) so there is no reason to evaluate #he/« term in (7.3).

C must now be found on the cell interfaces. This can be done indirectly but compac
by approximatingp between cell midpoints to be bilinear and then solving the potenti
equation (7.2) using high order differencings for This can be viewed as generating
a system of equations subject to constraints. The constraints are the previously calcu
midpoint values o€. The unknowns are the midpoint valuegand the values & needed
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on the cell interfaces. There is one unknown discggper cell but there can be an arbitrary
number of unknowrCs. In strained interfaces, from Section 4, a linear approximation 1
¢ between cells incurs a@(h?/«) error. For the interpolation to be everywhedgh*/°)
accuratex must therefore be at least equal in magnitud®th®®) = O(e%2).

The simplest approach is to fir@ at cell corners and cell interface midpoints. Once
found, these then allow a@®(h*/*) accurate Simpson’s rule integration to find interface
fluxes. Simpson’s rule gives an average interf@aaccording to

— 1
Ciyi2j = é(Ci +1/2,j-1/2 + 4Cit12 + Cit12j+1/2) (7.5a)

— 1
Cijt12 = E(Ci_1/2,1+1/2 +4C;i j112 + Cit1/2.,j+1/2)- (7.5b)
u andv convective fluxes are then

huit1/2Cisa2j,  hvijr1/2Ci 11/ (7.6)

The present method, unlike the second-order methods, has no explicit discrete en
The approximate rate of change of free energy by convection is given by

hsz)i,jui_%,ja—l/z,j - hz¢i,jui+%,ja+1/z,j
i,j ]
+hz¢i,jvi,j_%(§i,jfl/2 - hz¢i,jvi,j+%6i,j+1/z. (7.7)
i ]

The surface tension forcing corresponding to this is

Feitjz = —hCit1/2(0G + 1, ) — oG, j)) (7.82)
Fyijt2 = —hCi 112003, | +1) — oG, ). (7.8b)

Its relative error is the maximum dd(h*/e*) and O(h?/k). The first is the error in the
approximation ofZ, the second is the error due to the second-order-accurate differentiat
of ¢. Diffusive fluxes ofC can be approximated by

fX,i+l/2,j = _K(¢(I + 19 J) - ¢(I’ J)) (79a)
frizrzj = —«(@( +1,j) — 0, ). (7.9b)

It remains to discuss how to discretize the chemical potential equation. This is sol
for C at the cell corners and cell interface midpoints. At cell corgeisapproximated as
being the average of thg ; in the four surrounding cells; at interface midpoints it is the
average taken from the two cell neighbors. The discretization must be aQO¢abte?)
accurate. A good method that takes advantage of interface asymptotics is to use a variati
the compact mehrstellungen scheme. Expressed in stencil form, this, together with lea
order error terms, is

1 4 1 g [0 1 000 h2
g |4 20 4/C— 511 8 LW(C)=~|0 1 0f ¢+ 57+ O(h'/e).
1 4 1 010 00O

(7.10)
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Becausev?¢ is O(1/«) the dominant relative truncation error (f6rfound frome) is the
maximum ofO(h*/e*) and O(eh?/«). The equation is solved iteratively. Because of the
local constraints it converges very quickly, usually in 4 to 6 iterations, and at a rate t
appears to be independent of the number of mesh points.

The above discretizations can be fairly easily adapted for axisymmetric coordina
Equation (7.4) remains valid. I8 (h?/¢) error now includes the term(h?/24)(1/r)(dC/
ar). The transformations needed for the various Simpson rule integrations are obvious.
chemical potential equation becomes

S LS R P 0 1 0 h?
oz |AM- —20 M| C—5IM- 8 M, \IJ’(C):—¢+1—2V2¢+O(h4/e5).
M. 4 M, 0 1 0

(7.11)

My = (rx +ro)/2rg, Whererg isr at the stencil’'s central point, amd andr, are ther at
the stencil’s inner and outer points. Errors now also incl@dk?/¢) terms that contain the
first and second radial derivatives ©f

With more general grids it becomes hard to apply (7.3). A methodology applicable t
general grid oK finite volumes is to use the Knov@y directly as constraints. Each cell is
assigned a midpoint or centroid angidocated at itg is then linearly interpolated between
these points. A fine mesh afpoints is used to solve the chemical potential equation so as
find C on the interfaces. The unknowns are Khey plus thel C,. TheL chemical potential
equations are supplemented by #éntegral constraints. The constraints are expressed t
high-order numerical integrations over tGg

This approach has been implemented for the square mesh by replacing (7.4) with
constraint equation

%(Ci—l/z,J—l/z + Ci—1/2j+1/2 + Cit1/2j-12 + Civy2j+1/2)
1 4 =
+ §(Ci—1/2,j +Cij412+Cij—12 + Cia2j) + §Ci.j =Ci;. (7.12)

This is again Simpson’s rule in two dimensions. Equations (7.5), (7.6), (7.8), (7.9)
unchanged. Using Eq. (7.12) instead of (7.4) results in a somewhat slower iterative solu
of the chemical potential equation. There is no significant difference in solution results.

To repeat a major point contained in the preceding: for optimum convergema®to be
O(€?), 8 < 3/2. Assuming the phase-field model@g¢) accurate, the error of the method
is the maximum of(¢), O(h*/e%), andO(h?/«).

8. GRID ROUGHNESS AND ORIENTATION EFFECTS

The movement of a drop over a solid can be noticeably affected by the chemical in
mogeneities and roughness of the solid surface. For example, a small drop moving do
window pane tends to move intermittently and erratically. In numerical simulations the g
imposes the equivalent of a spatial roughness. Interfaces moving through a grid exhibit s
structural and energy oscillations as they move from being cell centered to cell-interf
centered and then back to being cell centered. This is especially manifest with very nar
interfaces.
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TABLE |
Interface Energy Using Second Order Numerics

Interface Cell centered Cell-interface centered Energy

cellwidthe/h energy errorx 100 energy errox 100 differencex 100
3.0 —2.38954 —5.37324 2.98370
35 —2.19554 —3.16595 0.97041
4.0 —1.82815 —2.12010 0.29195
45 —1.48281 —1.56581 0.08300
5.0 —1.20554 —1.22811 0.02257
6.0 —0.82987 —0.83137 0.00150
7.0 —0.60436 —0.60445 0.00009
8.0 —0.45998 —0.45998 0.00000
10.0 —0.29238 —0.29238 0.00000

Since the numerical methods used in this analysis are energy conserving or almost er
conserving, a grid-dependent oscillation in interface energy means there must also b
oscillation in kinetic energy. If the kinetic energy at its maximum is less than the differen
between the interface’s maximum free energy and minimum then the interface cannot rr
through the grid. With very narrow interfaces this can occur at fairly high velocities.

A simple way to estimate the energy roughness of a grid is to calculate the differel
between the energy of a static one-dimensional interface when cell centered and when
interface centered. To find this, (3.2) is solvedxas 0 with C antisymmetric about = 0.

For discreteC,,n=0, 1, 2, ... ., this antisymmetry condition becom€g = 0 for the cell
centered case arth = —C; for the cell-interface centered case.

Table | gives results for standard second-order differencing. The percentage rela
error of the numerical surface tension, 20Qoexact— 0num)/Fexacs IS given for both the cell
centered and cell-interface centered cases and results are given as a function of the inte
cellwidth €/h. The surface tension error for both caseigh?/€2) but the difference
between the two cases decreases exponentially. The difference is acceptable for r
calculations beginning at abouy h=3.5 (a relative difference of 1%), of little effect
(difference of .2%) at/ h =4.2, and negligible (difference of .02%) @th =5.

Table Il gives results for the fourth order mehrstellungen approximation. The numeri
surface tension is fourth order accurate. As discussed in Section 7, the mehrstellur

TABLE Il
Interface Energy Using Fourth Order Numerics

Interface Cell centered Cell-interface centered Energy

cellwidthe/h energy errorx 100 energy errox 100 differencex100
14 0.38126 —2.05892 2.44018
1.6 0.01335 —0.91346 0.92681
1.8 —0.09191 —0.43001 0.33810
2.0 —0.10300 —0.22259 0.11959
2.2 —0.08694 —0.12817 0.04123
25 —0.05849 —0.06651 0.00802
3.0 —0.02903 —0.02951 0.00048
35 —0.01553 —0.01555 0.00002
4.0 —0.00902 —0.00902 0.00000

5.0 —0.00365 —0.00365 0.00000
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discretization doesn’t have an explicit discrete energy. For the special case of equilibr
plane interfaces, however, it is possible to calculate the discretization’s energy to h
accuracy. From Egs. (3.1), (3.3) the energy of a plane interface in equilibrium is given
o= Zﬂff;o W dx. A trapezoidal numerical integration of this has exponential accuracy, -
errors due to the discretization can also be found to exponential accuracy. The results s
that the error in the energy decays lik&/¢* and, like the second order approximation, that
the interfacial energy roughness decays exponentially. The roughness is acceptable
to aboute/h = 1.6 and negligible at/h ~ 2.3.

Another important type of error stems from grid/interface orientation. Interfaces at ang
to the grid are better resolved and so more accurately approximated .ckidbtation gives
the best resolution. For the second order method, the energy error for an interface
thickness at a 45 orientation isxactlyequal to the energy error of a90riented interface
with thicknessy/2¢. Both the surface tension error and energy roughness of arited
interface can therefore be found from Table | by substitutif@/h for €/h. From the
table, the numerical surface tension of an interface is greater at thegidBtation than it is
when parallel. In general, the variation in numerical surface tension with change in angl
O(h"/eM). This variation can affect capillary vibrations but it does not significantly affec
transport. Given the much greater energy effects of changing interface length, and g
volumetric constraints, energy reduction by rotation is unlikely to play any role in forcir
interface evolution.

To summarize, at small interface widths and at low velocities interfaces can beca
trapped at energy minima in the grid. Just above the trapping threshold the kinetic
ergy, free energy, and velocity can all exhibit large grid-related oscillations. Fortunate
these effects fade exponentially with increasing interface width. Grid anisotropy effects
O(h"/eM).

9. ONE-DIMENSIONAL CONVECTION

One-dimensional convection through a grid provides one of the few discrete numer
systems that can be considered analytically. In continuum one-dimensional convectiol
interface remains at its equilibrium profile, the chemical potential is identically zero, a
there is no dissipation. In convection through a grid the interface becomes distorted fi
its equilibrium profile and an interfacial chemical potential boundary layer builds up. F
a given discretization the magnitudegfn this layer is a function of the three parameters
h, €, andk.

If the numerical method is energy conserving, this boundary layer slows the fluid dov
Any distortion caused by the numerical convection necessarily increases the interfa
free energy. The interfacial forceCd¢/dx compensates for this by exerting an oppos:
ing force on the fluid that reduces the kinetic energy. The chemical potential gradie
that build up act to dissipate the excess free energy and to restore the interface to eq
rium. When these various effects are in approximate balance and the interface is trave
through the grid with a quasi-periodic profile and energy the time-averaged decreas
kinetic energy caused b§d¢/dx must be equal to the time-averaged dissipation of fre
energy.

The potential is forced by the error in the discretization of the interface convectic
For the second order method the truncation erro®i&)h?/e%). The resulting chemi-
cal potential should be this order multiplied ly/«x, or O(Uh?/ke). The free energy
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TABLE 11l
Instantaneous Maximum Chemical Potential, Dissipation Error and Relative Interface
Energy Error as a Function of Grid Resolution, for a Convected Interface Discretized Using
Second Order Methods

Interface Flow Energy
cellwidthe/h || max(t) Dissipation resistance errerl00
4.00 61.586.2 2.811.8 —14.2/332 —-2.07/-1.77
5.04 40.543.5 1.932.61 —15/6.0 —-119/-1.17
6.35 26.1726.32 0.830.85 0.631.05 —.736/—-.735
8.00 16.6616.67 .323 319327 —.459
10.08 10.56 12572 125702574 —.287548

dissipation, from Eq. (2.7) applied over tiX¢) interfacial region where is large, should
be O(U2h*/ke®) and the integral of the interfacial fluid forcing should necessarily be th
same. These estimates have been checked by carrying out calculations of interface
vection with increasingly refined grids. The convection was given a fixed velocity sc
steady-periodic state could be achieved. The integral@€l¢ /dx was calculated at each
time step but this force was not then applied against the flow. Table Il shows maximi
chemical potential, the free energy dissipation, the interfacial force exerted on the fluid,
the relative surface tension error for the particular casé ef1 cm/s andr = 30 dynes/cm.

k = O(e), with « for the narrowest cellwidth being  10~6 cms’/erg-s. Interface width
at the narrowest cellwidth is 0.04 cm, so in one second this interface traverses 25 time
width and 100 mesh cells. Dissipation per unit interface area is given in ergé@achflow
resistance per area in dynesfcr8inceU = 1 the flow resistance and the rate of decreas
in kinetic energy are numerically the same.

The increase in interface cellwidth from one line of the table to the next lower is by
factor of 2/3. The predicted decrease|if|max is by 2/3 (1.587) and in the dissipation and
flow resistance by%® (2.520). This behavior is seen for cellwidths of 6 and greater. Fc
example, between cellwidths 6.35 and 8.[#)ax decreases by a factor of 1.579 and the
dissipation by 2.632¢|max and the other variables are all functions of the interface positio
relative to the grid, hence they are (quasi) periodic. The table gives the variables’ mini
and maxima. The range of variation decreases steadily and rapidly as cellwidth incree
This decrease is related to the exponential decay in the grid energy roughness. Thougt
not too evident from the results, the deviation of the surface tension from its averaged st
value should be approximately equal to the second variation of the free energy integral
the interface, 0(O(e8(C — Ceq)?) = O(€2|¢|?) = O(U2h*/k?). For the present case this
is O(h®3). The energy error, as it must be, is always such that the moving interface |
more energy than the static equilibrium interface (the energy errors in Table III are I
negative than the static energy errors in Table I).

The fourth order mehrstellungen method has no explicit free energy and thus no e
energy conservation. Free energy dissipation is not directly measurable. The measu
quantity of significance that relates to dissipation is the interfacial flow resistance. T
interfacial convective truncation error for the methodigJ h*/€%). The indicated maxi-
mum chemical potential i© (Uh?*/«x€%). The chemical potential is concentrated about the
interface. There is, so far, no theory for the magnitude of the flow resistance; its beha
will be found from numerical experiment.
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TABLE IV
Maximum Chemical Potential as a Function of Grid Resolution, for a
Convected Interface Discretized Using Fourth Order Methods

Interface mMay e |max(t)} max{ || max(t)}
cellwidthe/h k=0(e) k= 0(e¥?)
1.636 188.2 188.2
1.879 103.2 107.9
2.158 45.6 49.6
2.479 15.7 18.2
2.848 4.32 5.90
3.272 1.05 2.32
3.758 0.301 1.29

As a practical matter, the convergencepaind the flow resistance to zero is much fastel
than asymptotic. Very good results are obtained at interface thicknesses of only two to tl
cellwidths. At this thickness, convergence appears to be almost exponential. The asymp
regime is entered beginning at about a cellwidth of 5. Table IV gives{jhaxx(t)} as a
function of cellwidth in the narrow interface, non-asymptotic regime. Two sequences
given, one withk = O(¢) and one withk = O(e%/?). For both,« at the narrowest width
is 5x 10°® cme/erg-s.U ando are the same as for the second-order calculations. Tt
increase in interface cellwidth from one line of the table to the next lower is‘y Phe
expected rate of decrease in Mi@tmax(t)} is by a factor of 2/° (1.741) fork = O(e) and
22/5(1.319) fork = O(¢%?). The observed decrease in the neighborhoag bf~ 3 is by
a factor greater than four for the first case, by a factor of two for the second. Table V gi
results that extend into the asymptotic regime. In order to hasten convergaraeset to
twice that of Table IV]¢|max(t) and the flow resistance are shovdmax(t) decreases as
expected. For example, betweeth of 7.516 and 8.634¢|max(t) for « = O(¢) decreases
by a factor of 1.74, fok = O(¢%?) it decreases by 1.32. The flow resistance decreases li
h8/5 for k = O(e), like h®/® for « = O(e¥?). Note that the flow resistance is several order:
of magnitude lower than for the second order method.

The error in the potential due to convective truncation error does not have a diret
deleterious effect on computations. This is because it is not as important as the error ir

TABLE V
Instantaneous Maximum Chemical Potential and the Flow Resistance as a Function
of Grid Resolution, for a Convected Interface Discretized Using Fourth Order Methods

Interface [ | max(t) Flow resistance [l max(t) Flow resistance

cellwidthe/h k= 0(e) k= 0(e) k= 0(¥?) k= O(e¥?)

3.272 .380.858 —.0184/.0213

3.758 .257.473 —.00197.00284

4.316 .156.252 —0.56/3.31x 10*

4.958 .083.134 323/5.54x 10°°

5.696 .0488.0719 134/1.48x 10°° .148/.217 408/4.47x 10°°

6.543 .0293.0393 452/4.61x 10°° .117/.157 181/1.84x 10°°

7.516 .0172.0218 148x 10°® .091/.115 782x10°°

8.634 .0102.0122 484x 1077 .071§.0854 338x 1076
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dissipation, the flow forcing, or in the surface energy, which are all much smaller. The
latter errors are truer gauges of how the flow and interface are being distorted by the ¢
Thus, theO(h%5) error in the potential for the fourth order method with= O(¢%?) is
acceptable, because the flow resistance error is ©h#’®).

10. CAPILLARY WAVES

Capillary wave computations provide a test of the numerics of the surface tension mon
tum forcing. This section considers small-amplitude capillary waves on a plane interfa
Sections 8 and 9 have already shown that the fourth order method is far superior to
second order. Accordingly, only the fourth-order method will be discussed from now c
The problem is to calculate linear capillary wave frequencies as a function of waveleng
fluid viscosities, densities, and other fluid parameters. Numerical results can be compart
analytic results that are available for the original sharp-interface flow and for semi-analy
results for the linearized diffuse-interface model flow. An analytical expression is ave
able for sharp-interface viscous capillary-wave frequencies and the frequency eigenv
problem for capillary waves on plane diffuse interfaces is easily solvable numerically a
one-dimensional boundary value problem.

The previous two sections have given an indication of how difficult it is even in or
dimension to reach regimes in which numerical error is decaying in true asymptotic fa
ion. In two dimensions these regimes, as a practical matter, are completely unre:
able. In this section this problem is partially got around by comparing numerical diffus
interface frequencies to exact diffuse-interface frequencies and then comparing these ¢
diffuse-interface frequencies to those of the actual sharp interface. There are, in a way,
regimes of convergence, the “practical’” and the asymptotic. The two have very differ
behaviors with the practical regime showing much more rapid convergence. It is eas
solve the frequency eigenvalue problem in the practical regime and sometimes difficult
possible to solve it in the asymptotic regime. In the latter, one finds the asymptotic rate
convergence of diffuse-interface to sharp-interface frequencies. It is also possible to s
the “practical” convergence of two-dimensional numerical frequencies to exact diffuse
terface frequencies in the “practical” regime. This practical convergence is much fastert
the asymptotic numerical convergence hypothesized in Section 5. This hypothesis has
supported by the results reported in Sections 8 and 9 but these results have also s
that the coefficients for the asymptotic error, as indicated by Tables Il and V, are extrem
small. Essentially, as will be shown below, these asymptotic error terms are so small
they are invisible in capillary wave simulations except at impossibly fine grids.

The exact physical system under consideration is capillary waves on an infinite pl:
interface. The interface separates two fluids with identical viscosities and densities ar
runs along thex axis. To make numerical computations easier the system is bounded by
stress walls ay = +ys. The boundary conditions at the walls are that the vertical velocit
v is zero and the horizontal velocityandC and¢ are symmetric. The sharp-interface
equation for the frequenay is

3

lok k
w? = EG— (tanhkyS ol tanhlys), | = vk —iw/v. (10.1)
0

k is the (real) wavenumber. is the kinematic viscosity. is the square root of-1. w is
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complex, with its real part being the frequency and its imaginary part the damping re
This is an implicit equation as also appears in the viscous-related térm

The diffuse-interface eigenvalue equations are derived by linearizing (2.8)—(2.10) arol
a motionless plane interface and then assuming solutions of the{farm S, C, ¢} —
exp '“Y{sinkx u, coskx v, coskx S coskx C, coskx ¢}. The result can then be rearranged
as a system of two fourth-order ordinary differential equations, one &d one fokp:

g2 2 g2 _
M(d_yz - kz) v+ ia),a(d—y2 — kz) v= k2Cy¢> (10.2a)

d2 2 ? i Tes d2 2 H
ouc(dyz—k) ¢ — Bk (C)(dyz—k>¢—la)¢

5(y) is theC(y) of the unperturbed diffuse interface. Equations (10.2a) and (10.2b) we
discretized using fourth-order differencesik, o, p, v, €, k) was found to eight-digit ac-
curacy via shooting techniques coupled with Newton—Raphson iterations.

Two-dimensional calculations of (2.8—-2.10) were made for the particular case-of
30 dynes/cmp =1 cP,p =1 gram/cm, k=7, andys=1/2 cm. The calculations took
advantage of horizontal symmetry and were of half a wavelength. The domain of the «
culation was thus the square<k <1, —1/2 <y < +1/2. For these parameters the exact
sharp-interface frequencyds= 20.10313— .57986 . Calculations were time-accurate and
were made on 16& 16 up to 256x 256 grids. The initial condition was a finite ampli-
tude disturbance (velocity zero but the interface perturbed from planar). This sets o
capillary wave that gradually decays to being linear. Frequencies and decay rates wer
timated by calculating and storing the kinetic energy at each time step and then compt
times between kinetic energy peaks and decreases in amplitude from one peak to the
Figure 1 shows the kinetic energy history of a typicalkl&6 calculation. After some initial
irregularity it settles into a weakly amplitude-dependent periodicity and decay rate. E:
calculation was continued until the wave’s periodicity and decay rate became—to at leg
figures—time independent. This typically took about 60 periods, during which the kine
energy would decay by about 8 orders of magnitude.

Both the eigenvalue and two-dimensional calculations were made uB(i®) =
(C+1/2)%(C — 1/2)%. Tables VI and VII show exact diffuse-interface eigenfrequencie
as a function ok ase — 0 for, respectivelyx o e andx oc€2. The eigenfrequencies are
shown in terms of their two components, the real frequency in radians/s, and the dam
rate. The two sequences converge about equally fast down-t®1, at which point the
relative error is less than 0.1%. In the asymptotic regime converger@écisfor « e
andO(e?) for k o €2. Fork o< € the asymptotic regime begins at abeut .001. (The grid
required to resolve this regime, if uniform, would have something like 508000 points.)
The asymptotic regime begins sooner fos €2 because asymptotic surface tension er
rors, convection errors, and diffusive errors are then all the same order. In general,
k= 0(e%), 1< 8 <2, the asymptotic rate of convergence is controlled by the rate of di
fusion and isO(x). The comparatively high accuracy of these results is most likely dt
to the absence of solubility effects, because of the plane interface. It may also be
because of the symmetry af at the interface, to the absence of significant interfac
convective straining. This lack of straining makes it possible to obtain convergence
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FIG.1. Time-dependentkinetic energy of adecaying finite-amplitude capillary wave. The wave was calcula
on a 16x 16 grid.

2<48<3. This regime is unuseable for simulations because of effects from numeri
convection.

Tables VIII through XII show numerical results using the 4th order mehrstellunge
method for differenk(h) and« (h). The tables show the numerical complex frequencie
compared to exact diffuse-interface frequenciess proportional toh?2 in Table VII,
to h%5 in Table VIII then, in order, th®7, h®°, andh. « is proportional toe? o« h*? in

TABLE VI
Diffuse-Interface Frequency and Damping Rate as a Function of for k = O(e)

€ K x 107 Freq Freq error Damp Damp error

3/16 405.51 18.739 —.7666

3/32 202.75 19.498 —.5227

3/64 101.38 19.891 —.5154

3/128 50.688 20.03958 —.553939

3/256 25.344 20.08441 —1.872x 1072 —.573489 6370x 1073
3/512 12.672 20.09723 —5.897x 1073 —.579231 6288x 10~
3/1024 6.3360 20.10106 —2.069x 1073 —.580318 —4.580x 10
3/2048 3.1680 20.10231 —8.137x 10 —.580300 —4.402x 1074
3/4096 1.5840 20.10278 —3.516x 10 —.580135 —2.753x 10~
3/8192 0.7920 20.10297 —1.620x 104 —.580012 —-1517x10*

0 0 20.10313 0 —.579860 0
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TABLE VII
Diffuse-Interface Frequency and Damping Rate as a Function of for « = O(e?)

€ K x 107 Freq Freq error Damp Damp error
3/16 405.51 18.739 —.7666
3/32 101.38 19.506 —.5870
3/64 25.344 19.887 —.5434
3/128 6.3360 20.03927 —.556827
3/256 1.5840 20.08641 —1.672x 1072 —.571300 860x 1073
3/512 0.3960 20.09890 —4.227x 1073 —.577348 512x 10°°
3/1024 0.0990 20.10205 —1.080x 1073 —.579206 6640x 10+
3/2048 0.0248 20.10285 —2.822x 107 —.579702 1576x 1074
3/4096 0.0062 20.10305 —7.575%x 10™° —.579824 H17x 10°°
3/8192 0.0015 20.10311 —2.091x 10-° —.579852 6990x 10°°
0 0 20.10313 0 —.579860 0

TABLE VI

Plane Interface Capillary Wave Oscillation Frequency and Damping
Rate: € oc h?3, k o< h? oc h%3

Cell Freq Freq Damp Damp

No. pts € width K x 107 exact numerical exact numerical

16x 16 .1875 3.000 405.5 18.739 18.607 —.7666 —.6926

32x 32 1181 3.780 160.9 19.302 19.286 —.6294 —.6178

64 x 64 07441  4.762 63.86 19.668 19.663 —.5607 —.5585
128x 128 .04687  6.000 25.34 19.887 19.886 —.5434 —.5429
256 256 .02953 7.560 10.06 20.006 —.5507
512x 512 .01860  9.254 3.991  20.062 —.5626

00 X 00 0 00 0 20.103 —.5799

TABLE IX

Plane Interface Capillary Wave Oscillation Frequency and Damping
Rate: € ox h%5, k x €32 x h®/5

Cell Freq Freq Damp Damp
No. pts € width K x 107 exact numerical exact numerical
16x 16 .1875 3.000 405.5 18.739 18.607 —.7666 —.6926
32x 32 .1077 3.446 1765 19.384 19.342 —.5743 —.5615
64 x 64 .06185  3.959 76.83 19.773 19.765 —.5209 —.5186
128x 128 .03552  4.547 33.44 19.972 19.972 —.5346 —.5342
256 x 256 .02040  5.223 14.56 20.055 —.5577
512x 512 .01172  6.000 6.336  20.086 —.5713

00 X 00 0 00 0 20.103 —.5799
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TABLE X
Plane Interface Capillary Wave Oscillation Frequency and Damping
Rate: € o< h%7, k o< €¥® oc h®/7

Cell Freq Freq Damp Damp
No. pts € width  « x 107 exact numerical exact numerical
16x 16 .1875 3.000 405.5 18.739 18.607 —.7666 —.6926
32x 32 .1035 3.312 183.6 19.417 19.342 —-.5561 —.5420
64 x 64 .05714 3.657 83.16 19.812 19.777 —.5146 —.5116
128x 128 .03154 4.038 37.66 19.997 19.986 —.5388 —.5382
256x 256 .01741 4.458 17.06 20.067 —.5630
512x 512 .00961  4.922 7.724  20.091 —.5744
00 X 00 0 0 0 20.103 —.5799

Table VIl then toe®/2 oc h8/5, €43 o h®/7, €54 o h%8, ande o« h. The theoretical asymptotic
errorsrelative to diffuse-interface results are, respecti@gly*/®) (because of the absence of
interace straining) (h*°), O(h*7), O(h*?), andO(1). Except fore  h, the results show
that the practical convergence of numerical frequencies to diffuse-interface frequencie
much faster than asymptotic. Convergence of numerical frequencies to diffuse-interf
frequencies becomes slower abecomes more nearly proportional lidbut it remains
very rapid, much faster than linear, even éax h®°. The overall convergence to the exact
sharp-interface frequency is also much faster than linear. The ccad®/’ shows the
fastest frequency convergeneex h®° shows the fastest damping convergence. This woul
no longer hold true it the computations were made on finer and finer grids and the t
asymptotic regime were reached. The calculationsh may be in the asymptotic regime.
The results for this show a@®(1) error and indicate that there may be divergence. Thi
error is dominated by numerical grid and convection effects.

These same calculations have been made with a number of other second- and fo
order-accurate discretizations of the surface tension forcing and ¥fhéerm. So far, the
discretizations given in Section 7 have been found to be both the simplest and the best.
computed damping rate has been found to be much more sensitive than the real frequer
the discretization and also to such factors as number of pressure iterations or the numb
iterations used to solve the discrete chemical potential equation (Eqg. (7.10)). The comp

TABLE XI
Plane Interface Capillary Wave Oscillation Frequency and Damping
Rate: € x h¥®, k o €94 o< h19®

Cell Freq Freq Damp Damp
No. pts € width  « x 10° exact numerical exact numerical
16x 16 .1875 3.000 405.5 18.739 18.607 —.7666 —.6926
32x 32 1013 3.240 1877 19.436 19.327 —.5473 —.5322
64 x 64 .05468  3.500 86.90 19.831 19.745 -.5131 —.5091
128x 128 .02953  3.780 40.23 20.009 19.946 —.5419 —.5406
256 % 256 .01595  4.082 18.62 20.072 —.5657
512x 512 .00861  4.409 8.622  20.093 —.5758

00 X 00 0 00 0 20.103 —.5799
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TABLE XlI
Plane Interface Capillary Wave Oscillation Frequency and Damping Ratee o< h, x och

119

Cell Freq Freq Damp Damp
No. pts € width K x 10 exact numerical exact numerical
16x 16 .1875 3.000 405.5 18.739 18.607 —.7666 —.6926
32x 32 .09375 3.000 202.8 19.498 19.101 —-.5227 —.5009
64 x 64 .04688 3.000 101.4 19.891 18.256 —.5154 —.4913
128x 128 .02344 3.000 50.69 20.040 12.121 —-.5539 —.4424
00 X 00 0 3.000 0 20.103 —.5799

damping rate seems to be most dependent on the discretization used for the surface te
forcing. Itis significantly but secondarily affected by the discretizatiolW @p.

11. RAYLEIGH-TAYLOR INSTABILITIES

The Rayleigh—Taylor instability can occur when a denser fluid lies over a lighter. Wav
form on the interface, increase in amplitude, and transform into plumes. Computation
this section are of high-capillary-number, large-deformation flows. Analytic solutions &
not available; convergence is examined through visual inspection of grid-refined rest
The computed flows include near-singularities such as plume breaking, droplet format
droplet coalescence, contact line flow, and the formation of wall films. The calculations
this section are fourth-order and use: h*/® andk o €%/? o« h®°, This choice gives optimal
asymptotic convergenceD (h*/%), see Section 5) while minimizing. As discussed in
Section 7, the asymptotic error of the fourth-order compact method is the maximum
e, h*/e*, andh?/«k.

Figures 2a and 2b show the evolution of a Rayleigh—Taylor instability contained ir
square box with no-slip walls. The box is ten by ten centimeters. The dense fluid he
density of 1.0, the light 0.9. Ths viscosity of both fluids is 1 poise. The less dense fli
occupies one-eighth of the box. The initial interface is flat except for a small perturbat
at the box’s left wall. The figure shows results computed using four grids, 488 (top
row), 96x 96 (top middle), 19 192 (bottom middle), and 384 384 (bottom). Their
90% interface thicknesses are, respectively, 0.328-dn%7 cellwidths, 0.188 cm=1.81
cellwidths, 0.108 cra= 2.08 cellwidths, and 0.0621 ce 2.38 cellwidths. The mobilities are
1.63x 1074,7.10x 107°,3.09 x 107>, and 134 x 10~°. Contours are atintervals of 0.01, at
C =40.005,C = £0.015, etc. Thisis done to make any fluid intermixing or interface profils
deformation clearly visible. Except during interface breakups and coalescences inter
profiles are deformed very little. Because of the high contour density interface regions
marked by solid back. Usually the black extends fiGrm —0.495 toC = +0.495, so 99%
thickness is shown.

Results are shown for 6 different times, at 1.1, 1.65, 2.2, 2.75, 3.3, and 3.85 seco
The first shows the instability as it initially amplifies and propagates toward the right we
The instability grows at the left wall (second column) and, because of no-slip effects the
begins to plume away from it. A plume begins to form midway between the two sidewal
Between the two plumes the lower fluid has almost completely drained away from
lower wall, leaving a viscous film. The third column shows the right plume fully formec
In the fourth column this plume has transformed into a rising, highly asymmetric drop. T
left-wall plume has also separated and become the roughly circular droplet on the left. At
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FIG. 2. (a) Rayleigh—Taylor instability of a two-phase fluid. The computation was made on four grid
48 x 48 (top), 96x 96 (top middle), 19 192 (bottom middle), and 384 384 (bottom). Plots are in chronological
order reading from left to right. Contours are at 0.01 intervals. Interface smearing and distortion errors are
shown in detail. The lighter fluid is initially confined to the bottom. The initial interface is flat except for a sme
perturbation at the left wall. The interface moves upward at that location and a wave propagates out towar
right wall (first column). The disturbance amplifies (second column), plumes (third column), and then, in Fig.
separates into droplets (first column, Fig. 2b). (b) Continuation of Fig. 2a. The plumes separate into drops, w
rise to the top wall. A thin film of light fluid is left on the bottom. At the coarser resolutions this breaks into drople

fifth time the two droplets have risen to the top. The more resolved calculations show th
nestled against the top wall (not attached). Fluid is rising slowly along the two side wa
The right plume filament is snapping back to the lower wall. In the two coarser calculatic
the lower-wall film, due to disjoining-pressure instabilities, has split into droplets.

At the first three times the convergence of the calculation as grid size is increase
very clear. The 96 96, 192x 192, and 384 384 results are all essentially the same. The
48 x 48 calculation takes longer to form the right plume and its lower-wall film breaks ear
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FIG. 2—Continued

The main differences in the finer calculations are that intermixing and interface deformat
errors become much smaller.

The later times are affected by the various flow near-singularities that occur. The m
resolved the calculation the longer, in general, that it takes for wall film breakdown,
plume separation, and for droplet breakups and coalescences. Whether this matters ¢
depends on what is wanted from the calculation. The three finer calculations are in \
good agreement on the speed of the instability and its rate of vertical mass and en
transfer. At the last time shown the configuration of the two upper drops is close to the s:
for all three. There are differences; the left droplet in thex®® calculation has begun
to attach to the wall, it remains separate on the two finer grids; the«<384 calculation
shows a small third droplet in contact and about to coalesce with the right drop, this
already occurred on the 9696 and 192« 192 grids. These differences most likely have
only local, in both space and time, effects.
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FIG. 3. The propagation of a Rayleigh—Taylor instability wave. Contours are at 0.1 intervals;-fédsb to
+0.55. There are 10 contours between the @yQinasevValues. The wave is initiated by a small disturbance in
interface position at the box’s middle and then propagates symmetrically towards the two sidewalls. Times st
are 1.125, 1.6875, 3.375, 3.9375, 4.5, and 5.625 s.

The rightward propagating instability wave seen at times 1 and 2 is strongly affected
the presence of sidewalls. To see that wave and its manner of propagation more clearl;
instability has been calculated inamuch longer, 60 by 10 centimeters, box. Results are st
in Figs. 3-5 for grids 384 64, 768x 128, and 1576 256. Their 90% interface widths are
0.260 cm=1.67 cellwidths, 0.150 cm= 1.91 cellwidths, and 0.0859 cm 2.20 cellwidths.
The mobilities are 115 x 1074, 5.03 x 10°°, and 219 x 10~°. Results are shown at times
1.125, 1.6875, 3.375, 3.9375, 4.5, and 5.625 seconds. Contours in the figures are a
intervals, fromC = —0.45 to+0.45. The disturbance is initiated at the box’s midpoint anc
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FIG. 4. The same as Fig. 3 but at a resolution of 26828 and with smalle¢ andx.

propagates toward each side wall. Half the container is calculated; the results for the ¢
half found by symmetry. Material properties are the same as for the previous calculat
and the lighter fluid, as before, fills one-eighth of the container.

The three calculations are in very good agreement on important macroscopic quant
such as propagation speed, wavelength, rates of mass transfer, and the form of the p
gation. The propagation speed of the instability is about 5% faster for the finest resolu
than for the coarsest. Frame 3 shows the nature of the propagation fairly clearly. Plum
and+1 have already detached, plumgeg are fully formed, and plume&3 are beginning
to form. In the 1576« 256 calculation the filaments of plumesl are snapping back to
the lower wall, while the snapped back filament of plume 0 has become a droplet re
to detach. Between plumels2 and=+3 the lighter fluid has been nearly drained, leaving
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FIG.5. The same as Fig. 4 but at a resolution of 157856 and with smalle¢ andx.

as with Fig. 2, a thin film. Ahead of plum&3 the interface looks almost undisturbed. A
precursor, very low amplitude, capillary wave has already propagated to the wall but i
invisible at the scale of the figure.

Areas of disagreement in the three calculations include small scale quantities s
as plume-filament and film breakup times, which clearly have almost no impact on
instability, and coalescence times of drops at the container top. The differences in «
lescence times have an effect on the appearance and pattern of drops against the toj
but very little on their general distribution—in all three cases the flow tends to cluster t
upper wall light fluid slightly toward the center of the box. The finer two calculations al
in very good agreement in the upper part of the third frame. Between the third and foL
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frames the upper center droplet, which is already very elongated at time 3, splits int
droplets in the 76& 128 calculation while remaining whole in the 15¥&56 calcula-
tion. This then leads to further differences in coalescences and splittings in the next
frames.

12. CONCLUSION

Fluid-dynamical phase-field modeling is a new numerical/modeling approach to the cc
putation of two-phase flows and one with great promise. It allows the use of comm
easily analyzable and easily useable centered finite-volume, finite-difference, or fin
element convection schemes. One of the major disadvantages of phase-field model.
been the relatively large width of their interfaces. This paper has introduced a new c«
pact method that allows accurate computations, as has been shown in the sectio
high-capillary-number Rayleigh—Taylor instabilities, with interfacial thicknesses that ¢
be less than two cellwidths. This is less than the mollified interface width used with t
CSF model and also less than the width of interfacial force distribution used in tra
ing/distributed force methods.

The overall accuracy of the method is a very complicated issue. It is a function of thi
parameters, the interface widththe mobilityx and the mesh spacitg Itis also a function
of the rate of convergence of the phase-field model to sharp-interface results. The ana
has for the most part assumed that this convergen®gds. If this is true then the compact
method discussed herein can be optimized to an asymptotic overall accuracy of/Snly
Fortunately, it appears that practical convergence is generally much faster than asymp
convergence. Also, there is reason to believe ®&?) models can be developed. If so,
then better tha® (h) asymptotic accuracy can be obtained.

It might seem that the various difficult issues raised in the convergence analysis cal
avoided with the CSF and distributed force models. This is probably not so. Both moc
have an implied analytic model of continuum forcing. The accuracy of these models
dependent on the model interface thicknes$he rate of convergence for these analytic
models ag — 0 has not been established for either case. The rate of convergence of
VOF-CSF method, particularly its curvature calculations, may be a functitwieofather
than just. Finally, there are aspects of the CSF method that are analogous to the phase-
method’s use of diffusivity. The effects of VOF and level-set convection on surface ener
how they control or don’t control it, have not yet been analyzed.

The capillary wave test of Section 10 is an excellent and very difficult test for discre
diffuse interface surface tension models. The propagation rate and frequency of capil
waves are determined by the physics of energy transformations from kinetic to surf
energy and back again. In real two-phase flows the creation of surface energy by conve
is always equal and opposite to the creation of kinetic energy by surface tension. In difft
interface models interfacial energy creation occurs through the convection equation for
color function. Unfortunately, it is easy to formulate discrete systems in which the discr
convection ofC and the discrete surface tension forcing®jave incompatibilities. The
author’s experience is that the linear zero-amplitude limit brings these incompatibilit
out. As discussed in Section 8, rapid convection is less susceptible to grid effects tha
slow. In the same way, large-amplitude capillary waves are less susceptible to these ef
than are small-amplitude waves. Also, any tendency to form parasitic flows becomes n
noticeable as wave amplitude is reduced.
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Section 11 touched on the difficulties involved in calculating flow near-singularities su
as interface breakups and coalescences. Times at which these events occur can be
sensitive ta:. The actual events happen quickly but the time leading up them, for examg
viscous drainage leading up to coalescence, can scale/ikeThis is not just a numeri-
cal or modeling problem but is a difficulty that is observed in real flows. The time scal
for coalescences and interface break-ups are in reality highly variable from fluid syst
to fluid system. For example, air bubbles often coalesce fairly quickly, lava lamp drc
never do. Coalescence times depend not just on viscous drainage times but on both |
range (micro-scale) and short range (hano-scale) electrostatic and molecular interact
An advantage of the phase-field approach is that, if need be, material-dependent mode
these small scale electrostatic energies and potentials can be included in its energy forn
tions.

The ability to do such micro-scale modeling is one of the great strengths of the pha
field approach. For example, phase-field models are applicable to the simulation of com|
fluids such as micro-emulsions (Lamwrtal. [15]) and they may be useful for studying
two-phase micro-fluidic flows in which electrophoretic or other effects play a part. Also, tl
phase-field method’s relatively analytical grounding makes it useful for the study of tw
phase flow singularities. Initial work in this area has been done by Lowengrub a
Trusinovsky [16] for interface coalescences and break-ups and by the author [10] for moy
contactlines. Finally, the method can be of use for “DNS” studies of 10-100 nanometer flc
(Jacgmin [10]). At this scale, actual interface thicknesses (about one to two nanomet
can be included.
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